Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531024

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

2.
Adv Mater ; : e2311591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2 ) and silicon nitride (SiNx ). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx /Si and SiO2 /Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

3.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170908

RESUMO

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

4.
Angew Chem Int Ed Engl ; 63(12): e202315075, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38135664

RESUMO

Phosphine-functionalized metal-organic frameworks (P-MOFs) as an emerging class of coordination polymers, have provided novel opportunities for the development of heterogeneous catalysts. Yet, compared with the ubiquitous phosphine systems in homogeneous catalysis, heterogenization of phosphines in MOFs is still at its early stage. In this Minireview, we summarize the synthetic strategies, characterization and catalytic reactions based on the P-MOFs reported in literature. In particular, various catalytic reactions are discussed in detail in terms of phosphine ligand structure-function relationship, including the potential obstacles for future development. Finally, we discuss the possible solutions, including new types of reactions and techniques as the perspectives for the development of P-MOF catalysts, highlighting the opportunities and challenges.

5.
Nat Commun ; 14(1): 5347, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660056

RESUMO

Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.

6.
J Am Chem Soc ; 145(31): 17164-17175, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37440344

RESUMO

One of the hallmarks of multicomponent metal-organic frameworks (MOFs) is to finely tune their active centers to achieve product selectivity. In particular, obtaining bimetallic MOF hollow structures with precisely tailored redox centers under the same topology is still challenging despite a recent surge of such efforts. Herein, we present an engineering strategy named "cluster labilization" to generate hierarchically porous MOF composites with hollow structures and tunable active centers. By partially replacing zirconium with cerium in the hexanuclear clusters of UiO-66, unevenly distributed yolk-shell structures (YSS) were formed. Through acid treatment or annealing of the YSS precursor, single-shell hollow structures (SSHS) or double-shell hollow structures (DSHS) can be obtained, respectively. The active centers in SSHS and DSHS differ in their species, valence, and spatial locations. More importantly, YSS, SSHS, and DSHS with distinct active centers and microenvironments exhibit tunable catalytic activity, reversed selectivity, and high stability in the tandem reaction and the photoreaction.

7.
J Am Chem Soc ; 145(8): 4736-4745, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790398

RESUMO

While trinuclear [FexM3-x(µ3-O)] cluster-based metal-organic frameworks (MOFs) have found wide applications in gas storage and catalysis, it is still challenging to identify the structure of open metal sites obtained through proper activations and understand their influence on the adsorption and catalytic properties. Herein, we use in situ variable-temperature single-crystal X-ray diffraction to monitor the structural evolution of [FexM3-x(µ3-O)]-based MOFs (PCN-250, M = Ni2+, Co2+, Zn2+, Mg2+) upon thermal activation and provide the snapshots of metal sites at different temperatures. The exposure of open Fe3+ sites was observed along with the transformation of Fe3+ coordination geometries from octahedron to square pyramid. Furthermore, the effect of divalent metals in heterometallic PCN-250 was studied for the purpose of reducing the activation temperature and increasing the number of open metal sites. The metal site structures were corroborated by X-ray absorption and infrared spectroscopy. These results will not only guide the pretreatment of [FexM3-x(µ3-O)]-based MOFs but also corroborate spectral and computational studies on these materials.

8.
Angew Chem Int Ed Engl ; 61(49): e202214055, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36224094

RESUMO

Photo-catalysis by small-molecules is often limited by catalyst degradation and low electron-transfer efficiency. Herein we report a stable N-phenyl-phenothiazine (PTH)-derived porous coordination cage (PCC) as a highly efficient photocatalyst. By the incorporation of the photocatalytic PTH moiety into a PCC, aggregation-induced quenching (AIQ) was shown to be reduced. An improvement in catalyst stability was discovered, ascribed to the synergistic effects of the PTH moieties. The catalyst, operating through a photolytic single-electron transfer, was utilized for photo-catalyzed dehalogenation and borylation. Evaluation of the catalytic mechanism in the borylation reaction showed that the improved performance results from the more efficient formation of the electron donor-acceptor (EDA) complex with the cage. This discovery provides a potential strategy to improve the photophysical properties and stabilities of small-molecule organic photocatalysts via supramolecular chemistry.

9.
J Am Chem Soc ; 144(40): 18511-18517, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170014

RESUMO

Reticular chemistry allows the control of crystalline frameworks at atomic precision according to the predesigned topological structures. However, only a limited number of topological structures of three-dimensional (3D) covalent organic frameworks (COFs) have been established. In this work, we developed a series of 3D COFs with an unprecedented she topology, which were constructed with D3d- and D4h-symmetric building blocks. The resulting COFs crystallize in a space group of Im3̅m, in which each D3d unit connects with six D4h units to form a noninterpenetrated network with a uniform pore size of 2.0 nm. In addition, these COFs exhibited high crystallinity, excellent porosity, and good chemical and thermal stability. The crystalline structures, composition, and physicochemical properties of these networks were unambiguously characterized. Notably, the inbuilt porphyrin units render these COFs as efficient catalysts for photoredox C-C bond forming and photocatalytic carbon dioxide reduction reactions. Thus, this work constitutes a new approach for the construction of 3D she-net COFs and also enhances the structural diversity and complexity of COFs.

10.
Angew Chem Int Ed Engl ; 61(37): e202207786, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723492

RESUMO

Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.


Assuntos
Estruturas Metalorgânicas , Catálise , Cromatografia , Estruturas Metalorgânicas/química , Conformação Molecular
11.
Chem Sci ; 13(6): 1657-1664, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282630

RESUMO

Near-infrared (NIR) photothermal materials hold great promise for use in several applications, particularly in photothermal therapy, diagnosis, and imaging. However, current NIR responsive materials often show narrow absorption bands and low absorption efficiency, and have long response times. Herein, we demonstrate that the NIR absorption of tetrathiafulvalene-based metal-organic frameworks (MOFs) can be tuned by redox doping and using plasmonic nanoparticles. In this work, a MOF containing redox-active tetrathiafulvalene (TTF) units and Dy-carboxylate chains was constructed, Dy-m-TTFTB. The NIR absorption of the as-synthesized Dy-m-TTFTB was further enhanced by Ag+ or I2 oxidation, transforming the neutral TTF into a TTF˙+ radical state. Interestingly, treatment with Ag+ not only generated TTF˙+ radicals, but it also formed Ag nanoparticles (NPs) in situ within the MOF pores. With both TTF˙+ radicals and Ag NPs, Ag NPs@Dy-m-TTFTB was shown to exhibit a wide range of absorption wavelengths (200-1000 nm) and also a high NIR photothermal conversion. When the system was irradiated with an 808 nm laser (energy power of 0.7 W cm-2), Ag NPs@Dy-m-TTFTB showed a sharp temperature increase of 239.8 °C. This increase was higher than that of pristine Dy-m-TTFTB (90.1 °C) or I2 treated I3 -@Dy-m-TTFTB (213.0 °C).

12.
ACS Cent Sci ; 8(2): 184-191, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233451

RESUMO

Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.

13.
ACS Appl Mater Interfaces ; 14(9): 11192-11199, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192321

RESUMO

Energy-efficient capture and release of small gas molecules, particularly carbon dioxide (CO2) and methane (CH4), are of significant interest in academia and industry. Porous materials such as metal-organic frameworks (MOFs) have been extensively studied, as their ultrahigh porosities and tunability enable significant amounts of gas to be adsorbed while also allowing specific applications to be targeted. However, because of the microporous nature of MOFs, the gas adsorption performance is dominated by high uptake capacity at low pressures, limiting their application. Hence, methods involving stimuli-responsive materials, particularly light-induced switchable adsorption (LISA), offer a unique alternative to thermal methods. Here, we report the mechanism of a well-known LISA system, the azobenzene-based material PCN-250, for CO2 and CH4 adsorption. There is a noticeable difference in the LISA effect dependent on the metal cluster involved, with the most significant being PCN-250-Al, where the adsorption can change by 83.1% CH4 and 56.1% CO2 at 298 K and 1 bar and inducing volumetric storage changes of 36.2 and 33.9 cm3/cm3 at 298 K between 5 and 85 bar (CH4) and 2 and 9 bar (CO2), respectively. Using UV light in both single-crystal X-ray diffraction and gas adsorption testing, we show that upon photoirradiation, the framework undergoes a "localized heating" phenomenon comparable to an increase of 130 K for PCN-250-Fe and improves the working capacity. This process functions because of the constrained nature of the ligand, preventing the typical trans-to-cis isomerization observed in free azobenzene. In addition, we observed that the degree of localized heating is highly dependent on the metal cluster involved, with the series of isostructural PCN-250 systems showing variable performance based upon the degree of interaction between the ligand and the metal center.

14.
Angew Chem Int Ed Engl ; 60(52): 27258-27263, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34714946

RESUMO

High-efficiency photocatalysis in metal-organic frameworks (MOF) and MOF nanosheets (NSs) are often limited by their short-lived charge separation as well as self-quenching. Here, we propose to use the energy-transfer process (EnT) to increase charge separation, thus enhancing the catalytic performance of a series of MOF NSs. With the use of NS, the photocatalyst can also be well isolated to reduce self-quenching. Tetrakis(4-carboxyphenyl) porphyrin (H4 TCPP) and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) linkers were chosen as the acceptor and donor moieties, respectively. Accounting for the precise spatial design afforded by the MOF NSs, the donor and acceptor moieties could be closely positioned on the NSs, allowing for an efficient EnT process as well as a high degree of site isolation. Two templates, donor-on-acceptor NS and acceptor-on-donor NS catalysts, were successfully synthesized, and the results show that the second one has much enhanced catalytic performances over the first one due to site-isolated active photocatalysts.

15.
J Am Chem Soc ; 143(43): 18052-18060, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34637619

RESUMO

The development of highly stable covalent organic frameworks (COFs) is extremely compelling for their implementation in practical application. In this work, we rationally designed and synthesized new kinds of ultrastable bimetallic polyphthalocyanine COFs, which are constructed with the dioxin linkage through the nucleophilic aromatic substitution between octahydroxylphthalocyanine and hexadecafluorophthalocyanine. The resulting bimetallic CuPcF8-CoPc-COF and CuPcF8-CoNPc-COF exhibited strong robustness under harsh conditions. The eclipsed stacking mode of metallophthalocyanine units supplies a high-speed pathway for electron transfer. With these structural advantages, both COFs displayed considerable activity, selectivity, and stability toward electrocatalytic CO2 reduction in an aqueous system. Notably, CuPcF8-CoNPc-COF showed a faradaic efficiency of 97% and an exceptionally high turnover frequency of 2.87 s-1, which is superior to most COF-based electrocatalysts. Furthermore, the catalytic mechanism was well demonstrated by using a theoretical calculation. This work not only expanded the variety of dioxin-linked COFs, but also constituted a new step toward their practical use in carbon cycle.

16.
J Am Chem Soc ; 143(31): 12129-12137, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340311

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have aroused enormous interest owing to their superior stability, flexible structures, and intriguing functions. Precise control over their crystalline structures, including topological structures, porosity, composition, and conformation, constitutes an important challenge to realize the tailor-made functionalization. In this work, we developed a new Zr-MOF (PCN-625) with a csq topological net, which is similar to that of the well-known PCN-222 and NU-1000. However, the significant difference lies in the conformation of porphyrin rings, which are vertical to the pore surfaces rather than in parallel. The resulting PCN-625 exhibits two types of one-dimensional channels with concrete diameters of 2.03 and 0.43 nm. Furthermore, the vertical porphyrins together with shrunken pore sizes could limit the accessibility of substrates to active centers in the framework. On the basis of the structural characteristics, PCN-625(Fe) can be utilized as an efficient heterogeneous catalyst for the size-selective [4 + 2] hetero-Diels-Alder cycloaddition reaction. Due to its high chemical stability, this catalyst can be repeatedly used over six times. This work demonstrates that Zr-MOFs can serve as tailor-made scaffolds with enhanced flexibility for target-oriented functions.

17.
Chem Sci ; 12(11): 4104-4110, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-34163681

RESUMO

Modulating different stacking modes of nanoscale metal-organic frameworks (MOFs) introduces different properties and functionalities but remains a great challenge. Here, we describe a morphology engineering method to modulate the stacking modes of nanoscale NU-901. The nanoscale NU-901 is stacked through solvent removal after one-pot solvothermal synthesis, in which different morphologies from nanosheets (NS) to interpenetrated nanosheets (I-NS) and nanoparticles (NP) were obtained successfully. The stacked NU-901-NS, NU-901-I-NS, and NU-901-NP exhibited relatively aligned stacking, random stacking, and close packing, respectively. The three stacked nanoscale NU-901 exhibited different separation abilities and all showed better performance than bulk phase NU-901. Our work provides a new morphology engineering route for the modulation of the stacking modes of nano-sized MOFs and improves the separation abilities of MOFs.

18.
ACS Appl Mater Interfaces ; 13(44): 51849-51854, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33914510

RESUMO

Sites isolation of active metals centers, systematically studied in homogeneous systems, has been an alternative to develop low metal consuming, highly active next generation catalysts in heterogeneous condition. Because of the high porosity and facile synthetic procedures, MOF-based catalysts are excellent candidates for heterogenization of well-defined homogeneous catalysts. Herein, we report the direct Pd coordination on the azobenzene linker within a MOF catalyst through a postsynthetic modification method for a Suzuki-Miyaura coupling reaction. The immobilized cyclopalladated complexes in MOFs were analyzed by a series of characterization techniques including XPS, PXRD, and deuterium NMR (2H NMR) spectroscopy. The heterogeneous nature of the catalyst as well as its stability were demonstrated though "hot filtration" and recycling experiments. Furthermore, we demonstrate that the MOF packed column promoted the reaction between phenyl boronic acid and bromobenzene under microflow conditions with a 85% yield continuously for 12 h. This work sheds light on the potential of site-isolated MOF catalysts in efficient, recyclable and continuous flow systems for industrial application.

19.
Angew Chem Int Ed Engl ; 60(19): 10806-10813, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33635600

RESUMO

The poor electrical conductivity of two-dimensional (2D) crystalline frameworks greatly limits their utilization in optoelectronics and sensor technology. Herein, we describe a conductive metallophthalocyanine-based NiPc-CoTAA framework with cobalt(II) tetraaza[14]annulene linkages. The high conjugation across the whole network combined with densely stacked metallophthalocyanine units endows this material with high electrical conductivity, which can be greatly enhanced by doping with iodine. The NiPc-CoTAA framework was also fabricated as thin films with different thicknesses from 100 to 1000 nm by the steam-assisted conversion method. These films enabled the detection of low-concentration gases and exhibited remarkable sensitivity and stability. This study indicates the enormous potential of metallophthalocyanine-based conductive frameworks in advanced stand-off chemical sensors and provides a general strategy through tailor-make molecular design to develop sensitive and stable chemical sensors for the detection of low-concentration gases.

20.
Chem Sci ; 11(24): 6229-6235, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953018

RESUMO

In designing multifunctional materials for potential switches that can be used as memory devices, the high-spin (HS) to low-spin (LS) crossover (SCO) one-dimensional polymer, [FeII(L)(4,4'-bpy)] n , was constructed from a designed redox-active tetrathiafulvalene (TTF) functionalized Schiff-base and the ditopic linker 4,4'-bipyridine (bpy). It exhibits an 8 K hysteretic SCO centred at T 1/2 = 325 K which is coupled to changes in its dielectric constant. The crystal structures above and below the transition temperature reveal similar parallel linear ···Fe-bpy-Fe-bpy··· chains displaying expansion of the FeII octahedron in the HS state. Density functional theory (DFT) calculations reveal a concerted electronic charge and spin change represented by the Mülliken charge of the Fe and the magnitude and direction of the dipole moment which substantiate the experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...